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Solutions
Question: 1 2 3 4 5 Total

Points: 12 13 18 20 27 90

Score:

1. (12 points) A machine produces 6-sided dice. The machine is defective: while 99.9% of the
dice it produces are normal, the remaining 0.1% have all their faces marked 6. Suppose I take
(at random) a die produced by this machine and roll it n times, and then I inform you that all
the rolls resulted in 6. For which values of n is it more likely that I took a defective die than
that I took a normal die?

Solution:

P(Defective die | n times 6) =
0.001 · 1

0.001 · 1 + 0.999 · (1/6)n
=

1

1 + 999/6n
.

This is larger than 1
2 if 6n > 999, which holds for n ≥ 4 .

2. (13 points) The continuous random variables Z and W are independent, with Z following the
exponential distribution with parameter 1 and W following the (continuous) uniform distribu-
tion on (0, 1). Compute P(Z < W < 3Z).
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Solution:

P(Z < W < 3Z) =

∫ ∫
1{z<w<3z}fZ,W (z, w) dwdz

=

∫ ∫
1{z<w<3z}fZ(z)fW (w) dwdz by independence

=

∫ ∞

0

∫ 1

0
1{z<w<3z}e

−z dwdz

=

∫ 1
3

0

∫ 3z

z
e−z dwdz +

∫ 1

1
3

∫ 1

z
e−z dwdz

=

∫ 1
3

0
2ze−zdz +

∫ 1

1
3

(1− z)e−z dz

= −3e−
1
3 + 2 + e−1.

3. A forgetful mouse is subjected to an experiment. It is placed inside the central room of a
maze that has 7 rooms, 3 cats and 3 cheeses as shown below. The mouse always moves into
a room chosen uniformly at random from all rooms adjacent to the room it is in, completely
independently of all its previous choices.

The experimenters will only remove the mouse from the experiment if it’s found all three
cheeses. Of course, whenever our mouse enters a room with a cat it will play with the cat and
will not leave that room ever again.

(a) (6 points) What is the probability the mouse will find at least one of the cheeses before
entering a cat’s room?
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Solution: Let Ei be the event that the mouse finds at least i cheeses before entering
the cat’s room. We want to compute P(E1). Each of the 6 rooms occupied by either

a cheese or the cat are equally likely to be visited first, so P(E1) =
3
6 .

(b) (6 points) Given that the mouse has found one cheese before it meets the cat, what is the
probability that the mouse will find a second cheese before entering a cat’s room?

Solution: We want to compute P(E2 | E1). Given that the mouse has found one
cheese, there are 5 occupied rooms left (2 cheeses and 3 cats), and the mouse is

equally likely to visit any of them. Thus, P(E2 | E1) =
2
5 .

(c) (6 points) What is the chance the mouse will find the three cheeses before meeting a cat?

Solution: We a similar argument as in the previous question, we find P(E3 | E2) =
1
4 ,

since after finding two cheeses, there are 4 rooms left (1 cheese and 3 cats), and the
mouse is equally likely to visit either of them. Thus, we have

P(E3) = P(E3 | E2) · P(E2 | E1) · P(E1) =
1

4
· 2
5
· 3
6
=

1

20
.

Alternative direct solution: We can consider the similar experiment where the
mouse does not stop when meeting a cat. Eventually the mouse will visit all the
rooms at least once. Now we can take note of in which order the rooms are visited
for the first times, for instance Cat2, Cheese1, Cat1, Cheese2, Cheese3, Cat3. We are
interested in the probability that the three first rooms are the ones with cheeses.

There are 6! possible orders of visiting the 6 rooms, out of which 3!× 3! correspond to
the orders where the first three rooms visited are all cheeses. The probability that the
mouse finds all three cheeses before meeting a cat is the same as the probability that
the first three rooms visited are all cheeses. So the probability is 3!×3!

6! = 3×2×1
6×5×4 = 1

20 .

Comment: Again, a serious student would have recognized that this is a small variation
of a tutorial exercise, namely Exercise 14.3.

4. (20 points) Let Z1 ∼ N (0, 1) and Z2 ∼ N (0, 1) be independent standard normal random
variables and

U = σ1Z1 + µ1, V = ρσ2Z1 +
√
1− ρ2 · σ2Z2 + µ2.

Show that (U, V ) follows a bivariate normal distribution (and write down the parameters of
this distribution).

Solution: See Lemma 15.1.1 and its proof in the lecture notes. (You need to apply the
Theorem 10.1.2 which gives you the joint pdf of the image of a random vector under bijective
differentiable function.)
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5. We have m urns and n balls, where m ≥ 2 and n are integer numbers. We place the balls
successively into the urns, so that any given ball is equally likely to go into any urn. Each
placement is independent of the other ones.

(a) (15 points) Let X and Y be the number of balls that go into urn 1 and 2, respectively.
Compute Cov(X,Y ).

Hint. It can help to write X in the form X =
∑n

i=1Xi, where Xi is the indicator that ball
i goes into urn 1; and similarly for Y . Then you might want to compute Cov(Xi, Yj) for
i ̸= j and i = j separately and use this to answer the question.

Solution: (Those who study correctly would have recognize that this is a small vari-
ation of a tutorial exercise, namely Exercise 10.3.)

As per the hint, we can write

X =
n∑

i=1

Xi, Y =
n∑

i=1

Yi,

where Xi is the indicator variable that ball i goes into urn 1, and Yi is the indicator
variable that ball i goes into urn 2. Then

Cov(X,Y ) = Cov

 n∑
i=1

Xi,

n∑
j=1

Yj


=

n∑
i=1

n∑
j=1

Cov(Xi, Yj)

=

n∑
i=1

Cov(Xi, Yi) +
∑
i ̸=j

Cov(Xi, Yj)

Note that for i ̸= j, Xi and Yj are independent, so Cov(Xi, Yj) = 0. For i = j, we have
Cov(Xi, Yi) = E[XiYi] − E[Xi]E[Yi]. Since Xi and Yi are indicators for the same ball
going into urn 1 and urn 2, respectively, we have E[XiYi] = 0 (the same ball cannot
go into both urns). Also, E[Xi] = E[Yi] = 1

m , so

Cov(Xi, Yi) = 0− 1

m
· 1

m
= − 1

m2
.

Therefore, we have

Cov(X,Y ) = n ·
(
− 1

m2

)
+ 0 = − n

m2
.

(b) (6 points) Compute the variance of X + Y .

Solution: We observe that X + Y is a binomial random variable with parameters
n and 2

m , since each ball can go into either urn 1 or urn 2 with probability 1
m each.



Probability Theory Resit - Page 5 of 6 8/7/2024

Therefore, we have

Var(X + Y ) = n · 2

m

(
1− 2

m

)
= n · 2

m
− n · 4

m2
=

2n

m
− 4n

m2
.

Alternatively, more convoluted solution: Both X and Y are binomial random
variables with parameters n and 1

m , so we have Var(X) = Var(Y ) = n · 1
m

(
1− 1

m

)
.

Thus, we have

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

= n · 1

m

(
1− 1

m

)
+ n · 1

m

(
1− 1

m

)
+ 2

(
− n

m2

)
= 2n · 1

m

(
1− 1

m

)
− 2n

m2

=
2n

m

(
1− 2

m

)
.

So the final answer is
2n

m
− 4n

m2
.

(c) (6 points) Now, assume that there are n = 2000 balls and m = 1000 urns. Show that the
probability that there are at least a total of 24 balls in total in the first two urns is less
than 1%.
Remark: If you show a (correct) stronger bound, this is obviously also fine.

Solution: We note that E(X+Y ) = 2n/m = 4, and Var(X+Y ) = 2n/m−4n/m2 =
4− 8

1000 ≤ 4.

P(X + Y ≥ 24) = P(X + Y − E(X + Y ) ≥ 20)

≤ P (|X + Y − E(X + Y )| ≥ 20)

≤ Var(X + Y )

202
(Chebyshev’s inequality)

≤ 4

400
= 0.01.

Alternatively, using the Central Limit Theorem: We can apply the Central
Limit Theorem, sinceX+Y is the sum of a large number of independent and identically
distributed random variables. The mean is E[X +Y ] = 4 and the variance is Var(X +
Y ) = 4 − 8

1000 = 3.992. By the Central Limit Theorem, we can approximate X + Y
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by a normal distribution with mean µ = 4 and variance σ2 = 3.992 ≤ 22.

P(X + Y ≥ 24) = P
(
X + Y − µ

σ
≥ 24− 4

σ

)
≤ P

(
X + Y − µ

σ
≥ 24− 4

2

)
= P

(
X + Y − µ

σ
≥ 10

)
≈ P (Z ≥ 10) (where Z is standard normal)

≤ P(Z ≥ 3.49) (very crude estimate)

≃ 0.0002 (from standard normal table)

< 0.01. (again very crude estimate)


